
The Orion Nebula is one of the most scrutinized and photographed objects in the night sky, and is among the most intensely studied celestial features. The nebula has revealed much about the process of how stars and planetary systems are formed from collapsing clouds of gas and dust. Astronomers have directly observed protoplanetary disks, brown dwarfs, intense and turbulent motions of the gas, and the photo-ionizing effects of massive nearby stars in the nebula.
The entirety of the Orion Nebula extends across a 1° region of the sky, and includes neutral clouds of gas and dust, associations of stars,ionized volumes of gas, and reflection nebulae.
The Nebula is part of a much larger nebula that is known as the Orion Molecular Cloud Complex. The Orion Molecular Cloud Complex extends throughout the constellation of Orion and includes Barnard’s Loop, the Horsehead Nebula, M43, M78, and the Flame Nebula. Stars are forming throughout the Orion Nebula, and due to this heat-intensive process the region is particularly prominent in the infrared.
The nebula forms a roughly spherical cloud that peaks in density near the core. The cloud has a temperature ranging up to 10,000 K, but this temperature falls dramatically near the edge of the nebula. Unlike the density distribution, the cloud displays a range of velocities and turbulence, particularly around the core region. Relative movements are up to 10 km/s (22,000 mi/h), with local variations of up to 50 km/s and possibly more.
Imaging telescopes or lenses: Skywatcher Esprit 80ED
Imaging cameras: Canon 600D
Mounts: Sky-Watcher HEQ5 PRO
Guiding telescopes or lenses: Celestron 80mm Guidescope
Guiding cameras: Sky-Watcher Synguider
Software: PixInsight, Adobe Photoshop, BinaryRivers BackyardEOS
Dates: Feb. 17, 2014
Frames:
10×120″ ISO400
20×180″ ISO400
20×30″ ISO400
20×60″ ISO400
Integration: 1.8 hours
Darks: ~20
Flats: ~20
Bias: ~20
Author: Peter Folkesson
AstroPhotography of the day by SPONLI
18 May 2014